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ABSTRACT

S

This paper presents a new extremal approach to deriving dual

optimization problems with proper duality inequality which simplifies

and gene ralizes the Fenchel-Rockafellar scheme . Our derivation proceeds

in two stages , (i) inequality attainment , (ii) decoupling primal and dual

variables. The power and convenience of this approach are exhibited

through a new , much simpler derivation of the Charnes-Coope r results

for Khinchin-Kullback-Lej bler statistical estimation [11, the immediate

establishment of the C duality for gene ral distributions and its extensions

to general linear inequality constraints, plus the development of a new , 

.

two-person zero-sum game connection.
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0. Introduction

In [1J Charnes and Cooper established a duality with three mutually
4 -

exclusive and collectively exhaustive (MECE ) duality states for constrained

K2L (Khinchin-Kullback-Leibler) statistical estimation with fin ite discrete

distributions. Their dual problems are

T 6
• (I) max v ( 8)  E - g~ f . )

wi t h & TA = b  , 6~~~0
and A T• (11) inf ~ (z) ~ cTe Z - b z I -

~

-

Extensions to general distributions were deve loped in (2 1 by Ben-Tal and

Charne s using function space settings and some generalized Fenchel-Rockefellar

duality theory [3J. The F-~~” theory was also employed by Ben-Tal and

Charnes in ~tJ to develop a general class of non-linear inequality constrained

convex programming problems with unconstrained duals as in the above

“C2” duality.

This pape r present s a new extremal approach to deriving dual optimiza-

tion problems with proper duality inequality which simplifies and generalizes

the Fenchel-Rockafellar scheme . Our derivation proceeds in two stage s1

(I) inequality attainment , (ii) decoupling primal and dual variables. The power

and convenienc e of this approac h are exhibited through a new, much simpler

• derivation of the Charnes-Coope r results for Khinchin-Kullback-Lelble r
2statistical estimation [11, the immediate establishment of the C duality for

general distributions and Its extensions to general linear inequality constraints ,
S

plus the deve lopment of a new two-person zero-sum game connection.

The latter dualities as well as extensions to general classes of convex

functionals a la [4J are being developed elsewhere by Charnes , Coope r ,

Seiford and Palacios.
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1. The Extremal Principle

We restrict the presentation here to convex programming dualities.

(The general case involves only the obvious deletion of the convexity (concavity)

requirements. ) There are two aspects to the principle. The first is the achieve-

ment of the duality inequality. The second is “decoupl ing” the variables

of the dual problems.

• Let K(6 , x) be a real-valued function concave in 6 for (6 , x) €

• A® X ~~R m x R S This funct ion is chosen so that g(ô) ~ inf K(6 , x) exists

for each 6 e A . (Thereby g(6) is a concave function of 8) .

For convexity re x and then decoupling, let x = T(z) map Z, a convex

set in R 1’, into Z. Let K( 6, x) f ( z ) , a convex function , for z ~ Z, 6 € r.
Thus r ® T(Z) is the decoupling set for (6 , x) . For convexity In 6 we

require A FJ’ to be a convex set.

Clearly ,  the n, the duality inequality is established

( 1) - g(6) ~ f( z) , V 8 r A A  r ,-V z c Z

Further , the problems

(III) sup g(6) , 6 e

and

(IV) inf f( z) , z c Z

are dual convex programming problems . Existence or nonexistence of

duality gaps is clearly dependent on the choices of AAP and Z.

H.
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2. The Dual Problems for Discrete K2 -L Estimation

Consider the function of two real variables 6, x,

(2) K (8 , x) E ce~C - ox, where c, 6 � 0.

Then f o r c > 0 a n d 6 �~) ,
- ,

(2. 1) g( 6) = inf K(6 , x) -6,gr 
~~~ where e is the base of the Napierian

- . logarithms, and we set 0 ø~ (0) = 0.

Note that if c = 0 with & � 0, then we must restrict x above , e. g.

x � 0, in order that g( O) exist .

Staying with c1 > 0 and introducing 6p x1 � 0, we have

(2.2) v(6) -Z .~ ôj ø~r(e~ j) � ‘
~~~~ (c~e’~ - 6tx~)1

for all 6 ~ 0 and all x.

Next , suppose

• (2 .3 )  ~~~~~~~~~~ ~~~~~~~~~~~~~~

for constant s a13 and b3.

Then, in vector-matrix notation,

(2. 4) v(8) ~~(z) u cTe A z - bT z

for 6 � 0, 6TA = bT and z unconstrained.

Thus (I) and (II) are established as dual convex programs satisfying the

duality inequality (2. 4) .

Further, they are established for the g !ral .diacrete dtMrtbution

case where the tx 13 ~6~1 ( z 3 3 are sequences for which the sums in (2. 2) ,

(2. 3) exist. For example, we could have x, 6, z in the sequence space

(Li ) and ,thereby, A a linear transformation from (L 1) into (L 1).
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3. The Cha rnes-Coope r Duality States

Clearly, from (2. 4), ~(z) is bounded below provided that 6 � 0, aTA=bT . •• 
-

has a solution. Suppose it does not. Consider the dual 1. p. problems:

(3. 1) max bTZ and mm 8T 0

Az sO 8TA b T

6 �0

By the extended dual theorem (5 1  , since z = 0 ~atisfie~ Az ‘0 , the re exists

a sequence zr~ such that Az~ ~ 0 and bTZr
~ .4 

~~~~~. But then , • -

~ (z ’~’) = cTe A z - bTzn ~ cTe _b Tzn . -

Thus we have established duality state 1 e. g.:

inf ~~(z) = - 1ff 6 � 0, 6 TA = bT has no solution. 1,

Next , suppose ~~(z) has a minimum. Since ~~(z) is differentiable and

convex ani z is unconstrained, the gradient must vanish at z~ , a minimum, e. g.

(3. 2) ?~~(z) 
= ~~cie n u 3

~~~~~.b j O, 
~~

= l , . . . n

But set ~ c~e~~ 
aiJ Z*) 

. Then 6 > 0 for all I and 6*TA = bT.

Note that for this choice

(3.3) V(o~~) = - ~~~~:~~~,~ (4~~~) 
~ o~ ~~~~~~~~~~~~~~

= 

~~~~ 

6~ - 

~~ 
8~ ( 1Az )= E - b z

T A Z * T *  .= c e - b z = mm ~~(z)

Hence v(6 4 ) = max v(6) , 6 ~ 0, 6TA = bT, and mm ~~(z) = max v(8) .

Conversely, suppose 6 � 0, 6TA bT has a solution 6 > 0. Then

(3. 4) ~~(z) = ~~{ci
e fa 13zJ - E aj~z~~

p
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But the function of one variable x , with c~, 6 m > 0,

(3.5)  ~ i(x)~~cje
X _ 6 jx 4 +~~asx4+~

Hence if z1’
~ is a sequence for which

(3.6) ~~(z ”) 4 i nf ~~(z)

we cannot have ~Az’~ ~ a~ ‘z~ -4 + ~ with n - ~~~. -
~ 

1 ) )  —

Since the 1AZ n are thereby bounded , we -can choose a subsequence, again

denoted z~ , so that

(3 .  7 )  1Az~ 4 a1, all i

Applying the Farkas-Minkowskj Closure Corollary (FMC2 ) [5J we

conclude the re exists z~ such that jAz * = ai, all i.

But then

(3.8) inf ~ (z) = L._~ ~~(z~ ) = cTea 
- V

i. e. ~~(z) has a minimum at z ’
~.

Thus state 3 is established :

T T T
~o(z) has a minimum tff 6 > 0 , 8 A = b has a solutton and mm

max v(6) .

By exhaustion, then , state 2 is established

~~(z) has only an infimum 1ff = 0 in every solut ion to 6 � 0,

T T6 A = b

To obtain the further properties in state 2 , we note first that since
— — T Tthere exists 6 � 0, 6 A = b , we can write

- 

~~~

‘

~
‘
: 

(3. 81) ~~ (z) = ~~~~ {cje~t’~’~~ - 

~j (jAz)1
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Now suppose ~ (z !~) -‘ inf ~ (z) and that (w. 1.o. g.)  (1Az 11) 4 a1, I e D,

(r Aze) 4 - 
~~, r ~ D. (Clearly 6r = 0 for r 4 D).

By the FMC2 
, there exists ~ such t hat 1A~ = a1, € D, rA~ 

� 1, r ~ D.

Then 1A(z n1.~ ) -‘ 0, i •ID and rA (z T’ - 1) - - c~ r ~ D. By
’the FMC 2, there

exists ~ such that ~~~ = 0, ~ e D, r~~~ 
� -1

Then 1A(~. + p ~ ) a 1,  l e D , rA~~~+ P ~~ 
4~~~~ a sP ~~~~

Thus ~ (1 + pn ‘ inf ~ (z) as p -4 ~~~.

But

(3. 82) ~ (~ + p~~ = 
i~ D ~ c~ e ~ - 6~ ( 1A~~) } + 

r~D 
Cr e ~~~~~~~~~~~ 

+

and

(3. 83) ~~~ +p~ ) = inf~ fz)  = 
i~ D ~ 

cje~
’
~~ 

- 

~~ 
~~~~~~~~~~~~ L~ D 

~~~~~ 
- bT~

=

iAz - - 
-

Now 
~ D

(z) = 
t~~D 

[c ~e - 61(Az ) s  has a minimum at say z

since 3. > 0 , 1 € D and .~~6~ (- A) = bT
1 me D 1 

~
Thus 

~~~~~~~~ GD(Z) . If ~ D(~~ <~~ D (1) , then

• Li.. ~ 4(~ + p2~) = • = inf ~ (z) , a contradittion.

So ~ D(
~

) = mm ~~D (Z) = inf ~~(z)

Then v(6) = inf~~(z) where = (cie’~~ , i e i

t o  i~~~I
• Hence v(O) = max v(6) •

Thus a 6* exists and by uniqueness 6~ = ~~•
S

The further properties of state 2 are thereby established, e.g. -

- 
•

‘

~~
- •
~~~ 

(3.9)  inf ’~~( z )  = max v (6) = mm ~ D(z) .

:4~’
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As noted by Charnes and Cooper in (1), the duality state may be

characterized by means of the linear program:

(3. 91) max u -

•

6TA b T
6 �0

State 1 corresponds to infeasibility, state 2 to ~~~~~ state 3 to $.~ > 0.

4. The C2 Duality For General Distributions

From the (two real variable ) result in (2) and (2.1). we can write

(4.1 ) —6 (t) ~Z r ec(t) J � c(t ) e~~
t) _ 6(t)x(t) ,

where c(t ) > 0, 6(t ) ~ 0 . •2

Taking ~t(t ) as a non-negative Radon-Stieltj es measure , then, assuming

existence of the integrals,

(4 .2 )  v (6 ) ~ — J6(t~ n 1  
~ 

J d~.t(t) � ~~[c(t)e
)
~~

t) 
— 6(t)x(t )Jd~.t(t)

Let f
x(t) = j ’A(t , s)z(s)dV ’(s) , and

(4.3 )

A(t , s) d~.i(t ) = b( s)

where vt s)  is a Radon-Stieltj es measure, and conve rgence of integrals is

assumed. The n (assuming Fubini ’s theore m holds),

(4.4) v( 6)~~ - So(t~~E e~~t~ I d~.t( t )  ‘ ~~(z) , and

~
(z) = Scc t) exp [5A(t , s) z(s) d~j( s)I  d~ (t) - Sb(s)z(a) d~j(s)

when (4. 1 and (4. 2) hold. 
-

Clearly with 6(t) = f 1(t) , c(t) > 0 (except on a set of M-measure zero)

H
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corresponding to f 2 (t) , in Kuilback’s notation [ 6 I~ we have here exhibited

the Charnes-Cooper dual programs for the case of general distributions. Note

for special choice of v that s takes on only a finite number of values as in

Rockefellar ’s or in Ben-Tal’s and Charne& work. This is the important

case in statistical estimation of a finite number of constraints. Thereby ~ z)

involves only an unconstrained finite vector z.

5. A Game-Theoretic Connection

We can also connect the C2 -duality with a saddle-point or two-person

zero-sum game . For , let

(5. 1) K(6 , x) 2 2~ (c je~
Ct — O jxi )

— be the payoff to the “6-player ” from the “x-player ’ Let the

respective strategy sets A , X be defined by

A~~ (o : OTA b
T 6 �0 ~

(5. 2)
X ~ [x: x = Az)

Clearly

(5.3)  sup v(6) sup’.E6jb~ (e
°
~’)  ‘sup inf K(6 , x)

:t But

(5.4) sup inf K(6,x) � inf sup K(8,x)
A X  X A

whenever both side s have meaning .

Also , 
T Az T

inf sup K(6 , x) = inf sup (c e - 6 Az)
X A z A

~ 5) = inf (c Te~~ - b
Tz) , when A ~ ~~~~

,

= inf ~~(z)

-• ‘- ‘
~~~

- From the C2 duality theory, ther~ sup v(6) inf ~~(z) 

-
~~~~
-

~~~~~~~~~
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Thus ,

Theorem: sup inf K(6 , x) = inf sup K(6) whenever A ~ 0A X  X A

Or more sharply,

max inf K(6 , x) = inf max K(6 , x) whenever A ~ 0.

~~ A More General Inequalities Form

Suppose we wish to consider discrete K2L estimation of the
form

(6. 1) max v(6) -5 T~~ 
I~~~~~~~]

subject to O TA 1 
= biT

6TA 2 
~

6 � 0

(6. 2) The constraints may be considered equivalently as

• 6TA 1 
= blT

O TA 2 + Y T
~... b2T

8T

~~~

T

~~~
0

By the remark on c 0  in ~ 2 , 
,

we may write a duality inequality as

(6. 3) -
~~~~ 

ojan + 0 � .

~~~~~~ 

(cje~~- 6.x.) ~ j rYr

with (6. 2) holding as well as

(6.  4 )  yr ~ 0, 1 €

To decouple we must choose representations of the xj y~ so that (6.2)

(~~
‘ 

~ 
represents the “ 1’ “ and so that Z comprehends (6. 4). In vector form we want

(6 5) 6T~ + ~~~ = b lTz~ + b2T z2

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~
•--

~~~~~~~~~~ .~. ~~ ~~~~~~~ ~~• ~ ~~• .. • ~~~~~~~~~~~ ••
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• It suffices to have

(6.6 ) (8T, ~T ) [Al A~~ [z r] = (b IT, b2T ) IZ il
IJL z 2J Lz 2J

or,

(6. 7) r~i rA’ A2l ~~[~J L° I J LZ2J with z 2 
~~0

The dual problems are now

(I ’) max v(6) ~ 6T g~

with ~6T,y TJ f A
l A2]  = ElbiT . b2TJ

, 6 , y � 0

and

(II ’) m i  ~ (z) eTe ( A z  ÷ A2 z 2 ) 
- b1 T i  

- b2Tz2 -:

with -z 2 � 0

As might be expected , there are three duality states. These may

be established as above and characterized by the solution of the 6-constraint

system (6. 1). These results have been considered by a dif f erent  method

by F. Palacios (a student of Charnes ).

The duality generalization to arbitrary statistical distribution functions

is, of course , immediate, as follows.

S

I-.

L
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The dual problems are

(III’ ) sup : v(f 1) • - 
S~~~1 ~~~~~~ IA

with ~ f 1(t ) A’ (t , s) dl  (t ) = b1(s) , s € S1

• $f 1(t A2 (t , s) du(t ) + g(s) = b 2(s), s e S 2
T 1 1

f 1(t) , g(s) � 0, t e T, s e S2

is given and greater than zero a. e. -u)

and

(IV ’) inf : ~ (z) ~ $f 2 t exp [ ~~

‘ 

A 1(t , s) z 1(s) dX i’ (a) + S A 2(t , a) z2( s ) dX 2 ( s)ldu -

T S1 S2

- Sb ’(s) z ’(s) dX 1(s) - 

~ 
b2 (s) z2 (s) dX 2 (8)

Si S2with z 2 (s) ~ 0, s € S2

where , of course , the duality inequality

(6. 8) v(f 1) � ~~(z) holds for 11(t ) , g(s) , z2 (s) -

•

constrained as in (III ’) , (IV’) and for suitable conve rgence of the

integrals.

7. Concluding Comments

The Charnes-Coope r extremal principle herein enunciated is more

general than the Fenchel-Rockefellar construction with the Legendre

• transformation(their K(6 , x) concave fun~tion~~ “6” is always linear in 5).

As illustrated above , the principle ’s simplic ity and -conc reteness should make

it a useful tool for the practicing analyst. 2

.
~1 - 
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A special instance of the game-theoretic connection is being

employed by Charnes, Cooper and Schinnar in current research to elucidate

economic phenomena in a cartel economy .

The generalizations to functions other than our (v O) ,  ç(z) and the

precise characterizations of the “ disc rete 11 dualities are also to be

published elsewhere. These are important for problems of statistical

inference with linear inequality constraint s since the dual problem is

not so encumbered. Further they apply directly to problems involving

the evolution of macroscopically irreversible systems from microscopically

reversible systems, as developed , for example , by B. 0. Koopman ( 7].

—‘/ 
_
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This paper presents a new extremal approach to deriving dual

optimization problems with proper duality inequality which simplifies and
generalizes the Fenchel-Rockafellar scheme. Our derivation proceeds in
two stages, (i) inequality attainment, (II) decoupling primal and dual variable s.
The power and convenience of this approach are exhibited through a new,

4 much simpler derivat ion of the Charnes-Cooper results for Khlnchln-
Kul~b~çk-Leibler statistical estimation [1), the Immediate establishment of
th~(C~”dua1ity for general distribut ions and its extensions to general linear

- - inequality constraints, plus the development of a new two-person zero-sum
gam: connection~~~ 
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